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Abstract 

A model  o f  a relativistically invariant Hamil tonian 2-particle interaction is given. It is 
classical in the sense of having 6 degrees of freedom. This model shows that the author's 
earlier general deffmition of such systems is not vacuous. In this model the forces of 
interaction die away as the particles are removed from each other. 

1. Definitions 

The general method for constructing such Lorentz-invariant systems of  
interacting particles was presented in (Arens, 1974). These systems are com- 
pletely Hamiltonian (see footnote 1). Briefly, the entire class o f  interactions 
defined in (Arens, 1974) is obtained in the following way. 

Say there are two particles. Let M be four-dimensional Cartesian space R 4, 
regarded as space-time. Form M x M with coordinates x 1, x 2 ' x 3, x 4, y 1, y 2 
y 3, y 4  Then form T1 (M x M), the cotangent bundle over M x M with co- 
ordinates x l ,  x2 . . . . .  y4 ,p l ,P2 ,P3 ,  P4 ,q l ,q2 ,q3 ,q4 .  In T I ( M x M )  there 
is defined a symplectic structure and a Poisson bracket 

OF OG 0 F O G  0 F ~ G  0F OG 
{F, G} = ax i Op i "~ ayi Oq i 3p i OX l Oq i 3yi 

where, as henceforth, we sum on repeated indices from 1 to 4. 
We now select a surface 5e 2 in / '1  (3t/x 34) invariant under the standard 

action of  the Poincar6 group, having also properties H-l,  H-2, H-3 as follows 
(footnote 2): 

1 As emphas ized  in (Arens,  1974),  these  sys tems do not  have all the  propert ies  enumera-  
ted in (Currie, Jordan,  and Sudarshar, 1963). 

2 We present  t h e m  in a different  order from, bu t  with the  same number ing  as tha t  
given in (Arens, 1974). The  wording in (Arens, 1974) is more  complicated because 
invaxiance is no t  there  pos tu la ted  at the  outset .  
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(H-2). There must exist ~hnctions// i , / /2 depending only on x 1 , x 2 , x a, x 4, 
Yl ,Y2 ,ya ,y4 ,Pt  ,P2,Pa, ql, q2,qa ,  but defined for alt values of  these 
variables satisfying 

(x t _ y l ) 2  + (x 2 _ y 2 ) 2  + (x 3 _ y a ) 2  > (x 4 _ y 4 ) 2  (I .1)  

such that 5£2 is described by 

P4 + HI = 0, q4 +/ /2 = 0 (1.2) 

//1 and/ /2 are subject to the condition 

(H-l) {P4 + H I , q 4  +H2} = 0 (1.3) 
A motion is a maximal connected integral submanifotd for the singular 

distribution of the restriction to S 2 of the symplectic structure of T 1 (M x M) 
(Arens, 1974). 

These motions are 2-dimensional. 
(H-3). Each pair of values (x4 ,y  4) occurs once and only once on each motion. 
I f  these conditions are formulated for only one particle instead of two then 

(H-l) becomes vacuous, (H-2) says that there is a Hamiltonian while (H-3) says 
that given any initial conditions there is a motion existing for all times x 4. 

Returning to two particles, it is shown in (Arens, 1974) that the resulting 
system has a Hamiltonian 

H(x I ' x 2, x 3, y l ,  y2 , y3 ,  Pl ,  P2, P3, ql ,  q2, qa, t) 

= H1 (x I ' x 2 ' x 3, t ,y l  ,y2 ya, t, Pl, P2, P3, ql, q2, q3) 

+ H2(x 1 ' x 2, x a, t, y l  ,y2 ,y3,  t, P l ,  P2, Pa, q l ,  q 2, qa) 

(1.4) 

The system will have zero interaction if and only if the six functions 
{aH/Ox t, H} (OH/Oy, H} are identically zero. It was argued in Arens (1974) 
that there is no formal obstacle to having a nonzero interaction. In the present 
paper we want to exhibit examples to show that (H-2) and (H-I) can be satis- 
fied without having a zero interaction. Reference to our remarks about single 
particles shows that (H-3) is a still more difficult matter. Since we do not ex- 
hibit our Ha and//2 explicitly, it is difficult to establish the required Lipschitz 
conditions for our examples. At any rate, we have not established (H-3) for 
our examples. 

2. Defining an lnvariant $2 

We ~511 insure the invariance ofo, 2 under the Poincar6 group by defining it 
by equations 

F 1 = 0, F 2 = 0 (2.1) 

where F 1 and F 2 are functions on Ta (M x M) which are invariant under the 
group. (We are then still permitted to discard components of the surface 
defined by 2.1 .) 
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For a = (a 1, a 2 ' a a, a 4) and b = (b I ,  b 2 ' b 3, b 4 ) we def'me a - b  = - a  1 b i _ 

a2b 2 -aab 3 + a4b 4. We let x = (x 1 , x 2 , x 3, x4) ,  etc. We let z = x - y .  We let 

p = p  "p, v = p  .q, a = q  "q, X = p  .z, ~" = z  -z, # = - q  -z (2.2) 

I f  Fx,  F 2 depend only on these 6 functions, the invariance will be insured. 

3. The Condition (H-l)  

I f F  1 and F 2 satisfy {F 1 , F2} = 0, and if the jacobian ~(F 1 , Fz) /a (p4 ,  q4) 
is not 0, we can solve the equations locally for P4, q4 :P4  = - H I ,  q4 = - H 2  
and (H- l )  will result locally. Our problem is thus two-fold: (a) ensure that  
{F 1 , F 2 } = 0 and (b) make sure that these equations (2.1) have a global 
solution. We consider the first problem in this section. 

We will, as a matter of  fact, deal only with the choice o f F  I = p - o. (This 
certainly includes the case of  zero interaction, which is given by F 2 = O - 1. 
This gives two free particles.) The following is obviously relevant. 

Theorem. Let F be an invariant function on T1 (M x 3/). Let F be expressed 
in terms of/9, v, a, X, f,  tz. Then {p - o, F} = 0 if and only i f F  depends only 
on p, a, v, A, or P where A is the Gram matrix 

( ; + q ) ' ( p + q )  ( p + q ) ' z )  

det + q )"  z z • z (3.1) 

and P is the Gram matrix 

jp'p p'q p . z )  

det "q q ' q  q ' z  

\ p ' z  q 'z  z .z  (3.2) 

Proof." We recall the Poisson bracket table for the six invariants [Arens, 
1974 (5.1)] 

0 0 0 2p 4X - 2 v  

0 0 0 v - #  -2 (X+~t )  v - o  

0 0 0 - 2 v  4/a 20 

-20 p - v  2v 0 2~ # - X  

- 4 X  2(X+#)  - 4 U  -2~" 0 -2~" 

2v cr - v - 2 0  X -/ .* 2~" 0 

From this it follows at once that {p - o, F} = 0 if and only if 

a F  
(P + v) OF+ 2 ( X -  U) ~ -  ( °  + v) -~-~ = 0  3X 

(3.3) 

(3.4) 
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It is routinely verifiable that the five given functions satisfy this condition. 
But there can be at most five functionally independent  functions that  do this 
or every invariant function would commute with O - o. But ~, for example, 
does not. This proves the present theorem. 

Actually,  we noted earlier that  the two functions 

×---(p +q) . (p  +q) =p + 2v + o (3.5) 

and I ~ commute  with everything. An interesting example of a funct ion com- 
muting with p - o is 

= + - -  (3.6) 
9 + p  9 + 0  

One has the relation 

(v + p)2(9 + cr)2~ 2 + XP + (p 2 - po)A = 0 (3.7) 

With F 1 = p - o and F 2 any function of  the five functions in the theorem, 
we will insure invariance and also {F1, F 2 ) = 0. The choice o f f  2 is l imited 
by these conditions: we want to be able to solve F 1 = 0 , / ;2  = 0 fo rP4  and q4 
and we want to avoid getting a zero interaction. (A zero interaction would 
surely result if  F 2 depended only on p, o, and v.) 

In order to explore this we introduce coordinates as follows. 

P = ( P x , P 2 , P 3 , U ) ,  P = ( P l , P 2 , P 3 )  

q = ( q l , q 2 ,  qa, v), Q = ( q l , q 2 ,  q3) 

z =(z l ,z2 ,z3, t ) ,  Z=(z l , z~ ,z3)  (3.8) 

We abbreviate p 1 q 1 + P 2q 2 + P 3q 3 by P '  Q, etc. We write P2 for P .  P and 
[el for ( p . p ) l / 2 ,  etc. We also abbreviate ( P +  Q) "Z by a, and IP+ QI by b. 

We will confine ourselves to that  region of T1 (M x M) where t 2 < Z 2, 
u > 0, v > 0. What that  means is that if  we define 5P 2 by equations F 1 = 0, 
F 2 = 0 then we count as belonging to 5e2 only those points of  T1 (3//x 34) for 
which also t 2 < Z 2 and u > 0, v > 0. We could just  as well have used the 
relations u < 0, v < 0, although this might seem a little odd and unmotivated 
at this point .  The fact is, the two choices ult imately result in Hamiltonians of  
opposite signs (see Section 5). 

Our intent  is now to express our 5 functions in terms of  u, v, t and the 
Euclidean invariants of  P, Q, Z.  For  example,  p = u 2 - p2 ,  cr = v 2 - Q2. It is 
a remarkable fact that  we can replace u and v by 8 -~ p - o and w = u + v. Our 
equations are then 6 = 0, F 2 = 0 and we will have to solve the lat ter  for w. 
Having done so we get u and v from u 2 = p + p2,  v 2 = 0 + Q 2  

X = p  + 2v + o = u 2 - p  ;z + 2 ( u v - P ' Q )  +v 2 - Q2 

= w 2 _ (p + Q)2 = w 2 _  b 2 
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For A we need X - V. X - / . t  = (p + q) -z = w t  - a .  So 

A = X~" - (X - #)2 = ( w  2 _ b 2 ) ( t  2 _ Z 2) _ ( w t  - a) 2 

= - Z 2 w  2 + 2 a t w  - a 2 + b 2 ( Z  2 - t 2) 

Finally, we compute  p and o. 
We note 

On the other hand 

1 

W2 = U2 + 2Uv + v 2 

= p + o - p 2  _ Q2 + 2uv 

t u 2 + v 2 - 2uv 

w 2 u 2+v 2+2uv (u 2_~2)2 

Now u 2 - v 2 = 6 + p2 _ Q2 where 6 = p - o. Thus 

(6 + p 2  _ Q2)~  
U 2 + v 2 - -  2 U v  = 

W 2 

Hence 

(6 + e 2 - Q2)2  
w 2 +  w 2 = 2 ( u 2 + v 2 ) = 2 ( P + o + e z + Q  2) 

We add and subtract  26 = 2(,o - o) and obtain 

O--j[w2- 2(p2 + Q2-6)+ 

a = ~  w -2(/ '  2 +Q2 +6)+ 

"1 
(p2 _ Q2 + 6)21 

W 2 J 
(p2 _ 02 + 6)2] 

W 2 ] 
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(3.9) 

(3.10) 

(3 .1 t )  

(3.12) 

(3.13) 

(3.14) 

4. So lv ing  f o r  w 

As we said, we wilt make 6 = 0. Therefore in this section p will stand for 

[w Q2)2] 1 2 2 ( ? 2 + Q Z ) + ( P  2 -  (4 . t )  
4 w ~ ] 

The strategy is to assemble a list of  functions of  w which are monotonely  
increasing with w for all values of  t,  a, b . . . .  and whose range of  values covers 
some fixed open interval for all values of  those parameters.  Let F be such a 
function and let c belong to its range. Then F = c can be solved for w in terms 
of t,  a, b , . . .  

The function X is an obvious example. I t  is monotone on (0, oo) and its 
range includes all positive values. However, it does not  involve Z and so would 
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produce a zero interaction. The function that makes examples possible is 
described in the following. 

Lemma. Let n >- 2 and denote by f (w)  the quotient 

A - Z 2 w  2 + 2 a t w - a  2 + b 2 ( Z  2 - t  2) 

X n ( w  2 - b2) n 

for w >- b. Then 

f (w)  >- - z  2 b=)nj 

Z 2 Z 2 

(W 2 --  b 2 ) n _  1 <-f(w)  <- - ( w  + b ) 2 ( w  2 - b2)  n - 2  

and f (w)  increases from - ~ ,  to 0 as w varies f rom b to oo. 
Proof.- First consider the case b 4= 0. Let I z l  = (z 'z)  '/2. 

Let w =bs, a = ab  IZt ,  t = # I Z I .  Then 

where 

f(w) = - Z 2  b2-2n g(s) 

(4.2) 

(4.3) 

(4.4) 

s 2 - 2 ~ s  - 1 + ~2 +/32 
g(s) : ( sn _ 1) n (4.5) 

Our next step is to Show that g'(s) attains its maximum (for fixed s), when 
tx =/~ = 1. Examination ofg ' (s)  shows that it attains its maximum whenever 
t~3(1 - s 2 + 2ns 2) - ns(ot 2 +/32) attains its maximum. Evidently, this maximum 
occurs with a/3 > 0. The value for a =/3 = 1 is positive, hence the maximum is 
positive, so that we conclude that it occurs on the boundary where either a or 
/3 is 1. For/3 = 1 we have a(2ns ~ - s 2 + 1) - ns(a 2 + 1). The critical point for 

is greater than 1, but the maximum for 0 =< ct < 1 is at 1. Going all the way 
back to f ,  and observing the sign change, we see that 

f ' (w)  >-- the value o f f ( w )  when a = b IZl ,  t = IZl 

>_ d I_Z (w-b) 2 ] 
-~w (w 2 _ b2)n j (4.6) 

1. 

This is one thing we promised to show. Examination o f  the derivative on the 
right shows that f ' (w)  > 0 for b < w < ~,  as we asserted. 

We also see that 

Z2(w _ b) 2 
f (w )  + (w 2 _ b2)n (4.7) 

never decreases, so it is not  greater than its limit at ~.  Hence f i s  bounded above 
by the expression claimed. For the lower bound we observe that 
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g(s) = (s - c~) 2 - (1 - 82)(1 - ~2) < (s - c~) 2 < (s - 1) 2 (4.8) 
(s 2 - 1) n - (s 2 - I)  n -  (s 2 - 1) n 

To finish the proof  for b :~ 0 we must examine the value f(b). This is 
obviously 0. 

Now when b = 0 we have f(w) = -ZZw 2-2n, and everything the lemma says 
obviously holds in this case also. 

Corollary. As w varies from b to + % the function 

( 1 - ~ - )  -1 (4.9) 

is positive, and is strictly decreasing, i fn  >_ 2. 
We now state some obvious facts about p. 

For w >_ IPI + IQI, p is monotonely increasing to ~ .  

A t w  = tel + IQI,p is zero 

Iel + Ia[ >->- b (4.10) 

As a result o f  the corollary and (4.10), taking n > 2, we can let our second 
equation be 

[ 1  - ( X n / A ) ]  - '  - p = 0 ( 4 . 1 1 )  

because the graphs of  p and 

[ 1  - (xn/A)I- '  (4.12) 

certainly do cross somewhere in the upper half-plane where p is monotonely 
increasing. Thus the value o f w  is greater than IPI + IQI. The corresponding 
value o f  p (and o) is then positive, and u = (p + p2)} ,  v = (e  + Q)} are 
defined. 

The reader should check that all this is true even for b = 0. Of course we 
want to be sure that w depends differentiably on the parameters t, a, b , . . .  
This can be shown by an easy application of  the implicit function theorem. 

Another equation which works for the same reasons (always understanding 
n >-.Dis 

A 
- - -  - 1 = p - 4 X  ( 4 . 1 3 )  

X n 

This one works because 

P -- 4X = (p2 _ Q2)2 
w2 - ( P -  Q) 2 (4.14) 

which has obvious monotonicity and range properties. 
In Section 7 we point out why this equation is not as good as (4.11). 
The reader may have wondered why we did not use the equation 

A× -n = - i  (4.15) 
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This is not satisfactory for a reason to be discussed in the next section. Even 
more undesirable would be 

X = 1 (4.16) 

5. The Hamiltonian 

According to the general theory [Arens, 1974 (4.4)] the Hamiltonian of  
the system is obtained as follows. Write 5v2 as the locus of  p4 + H  1 = 0, 
q4 + / /2  = 0. Then 

/ t  -- ( H  1 + / - /2 )  Ix 4 =y4 = 0 (5 . t )  

Obviously this says that H i s  nothing but - w  with t set equal to 0. 
Specifically, for (4.11) say with n = 2, the Hamiltonian satisfies 

1 - _ Z 2 - ~ - f - a S - ~ - b 2 Z 2  = 4- 2 _ 2(p2 + Q2) + H 2 J 

(5.2) 
Our theorems on monotonici ty guarantee that this has exactly one negative 
solution. ( I f  a negative Hamiltonian is undesirable, it can be avoided by having 
St  2 lie in the region u < 0, v < 0.) 

One can let H = -$112. Then S satisfies what is equivalent to a polynomial 
equation of the fourth degree: 

S - 2 ( P 2 + Q 2 ) +  S 1 + (S -~T~--ff+ a2] = 4 (5.3) 

We have shown that  this has always a unique positive root  S. We remind 
the reader that a = (P + Q)" Z and b = [P + Q I. 

A Hamiltonian is supposed to satisfy the Hessian condition, which is to say 
that the (Hessian) matrix 

Pi, 3pj] i,j=l ..... n 

is nonsingular. Here the Pl  . . . .  , Pn are the momenta  in some coordinate 
system. It  should be possible to decide whether this Hessian condition holds 
for an H defined by (5.3), but it seems somewhat premature to study this 
problem when there is no good physical justification for this H. However, we 
can prove rather easily that the Hessian determinant for H given by (5.3) is 
not identically zero. 

To see this observe first that H is an algebraic function of  Z -2 which is 
analytic for Z -2 = 0. Now when Z -2 is 0 we get 

H = - ( 1  +p2)  ~- _ (1 + Q2)~- (5.5) 

This is a familiar Hamfltonian for two noninteracting particles of  mass 1 
and it is wellknown, and easily seen, to have a nonsingular Hessian. 
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It is rather easy to see that for Z -2 4: 0, the H does not depend only on 
the momenta,  and hence we really have nonzero interaction. 

The Hessian condition is violated when H is based on (4.t 5) or (4.16) 
because H then depends only on a and b, and their dependence on the momenta 
is only v~ the three components o f P  + Q. Thus ~H/3Pl  = 3H/~qi (etc.) and 
so the Hessian determinant is identically zero. 

To verify the Hessian condition for (4.13) completely is also rather hard. 
Formally, we can set Z = 0. This is physically unrealistic, and the Hamiltonian 
has (when Z = (3) a singularity when (P - Q)2 __< 1. But the Hessian deter- 
minant is not  0 when (P - Q)2 > 1, and hence it cannot vanish identically in 
the physically interesting region where Z 4 = 0. 

It is possible to define formally the most general Hamiltonian resulting 
from the choice of  p - a as F 1 (see Section 3). One simply imposes one 
functional relation on some four independent functions which commute with 
p - c~. In this equation one sets the interparticle time separation t equal to 
zero and solves for w. Then H = - w .  To illustrate, let us take 4p - X, X, - A ,  
and - × ~ / 2 .  With t = 0 and w 2 = S these have the form (p2 _ Q 2 ) 2 / S  _ ( p  _ Q)2, 
S -  b 2 , Z 2 S  + a 2 - b 2 Z  2, and (P - Q) -Z respectively. Hence any relation of  the 
form 

(p2 _ Q2)/S  _ (p  _ Q)2 = f ( s  - b 2, Z 2 S  + a 2 - b2Z  2, (P - Q) .Z)  

(5.6) 

provided it can be solved for a positive root S, gives an H = - S  1 /2  . This must 
then still be examined for the Hessian condition. What we have done for (4.11) 
and (4.13) is to provide two simple instances of  such anf .  

We call this approach "formal" because to satisfy our full definition one 
has to be able to solve the functional relation with any t numerically less than 
[ZI. This we did for (4.11) and (4.13). 

6. Interpartiele Separation 

It is natural to require of  a several-particle interaction that the interaction 
should tend to zero for any particle removed far away from the others. For two 
particles this amounts to requiring that 3H/~x i (and of  course also M i l k y  i) 
should approach 0 as IZ[ -~ ~. 

It is not  hard to see that the model based on (4.11) meets this requirement. 
We have already remarked that Hi tse l f  has a limit (5.5) for IZI ~ ~. One can 
now take the derivative of  both sides of  (5.3) with respect to x i and again let 
IZI ~ ~. The result of  the computation together with the observation that the 
limit o r S  itself is not 0, shows that the limit of  3S/~x  i is 0. Again, since the 
limit o f  H i s  not 0, we obtain the limit for 3H/~x i to be 0, as desired. 

On the other hand, this requirement cannot be established for the H based 
on (4.13) which is why we deemed it inferior to (4.11). 
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7. Symplectic Actions o f  the Space-Tffme Group 

As shown in (Arens, 1974), the concept of 2-particle system involved here 
can be used to construct a symplectic (or Poisson-bracket preserving) action 
of the Poincar6 group in the (12-dimensional) phase space appropriate to a 
2-particle system. On the other hand, a symplectic action of the group need 
not in general arise in this way from systems of our type. 

Symplectic actions in ~6N as models for N-particle interactions were 
presented in (Thomas and Bakamjian, 1953), and studied in (Foldy, 1961) 
(and references to earlier work given). In these papers, the nonfulfillment of 
the world line condition for symplectic actions is recognized, (although they 
predate (Currie et al, 1963)). However, the question of degeneracy of the 
Hamiltonian is not discussed, and in fact their Hamiltonians can be degenerate. 

We will show in a subsequent paper that if our global axion H-2 is replaced 
by a local solvability condition, H-2 (loc), one can still obtain a symplectic 
action. This condition//-2 (loc) is so easy to satisfy that one can generate 
multitudes of symplectic actions and in fact produce examples violating a 
condition conjectured (not claimed) to be necessary in (Thomas and Bakamjian, 
1953). 

The paper (Van Dam and Wigner, 1965) is about world lines, so those 
systems satisfy the worldline condition. Hence they cannot be (and are not 
claimed to be) completely Hamiltonian. 
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